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Abstract
Mathematical diagrams are becoming easier to create, with some systems only requiring input of
the original mathematical notation. This opens up opportunities to create new kinds of visual
media. We define a visual explanatory medium for mathematics, the Visual Mathematical Narrative,
derived from the broader medium of Visual Narratives (“comics”). We propose extending the
declarative description language of the Penrose system with constructs that map to the visual
primitives we envision in this medium. Finally, we explore potential correspondences between
existing textually-oriented mathematical media and visual mathematical narratives.
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Band the set B is a subset of AAConsider the set 

{
Set A, B
Panel ([A], " Consider the set [A]")
Panel ([B], "and the set [B]")

IsSubset (A, B)
Panel ([A, B], "[A] is a subset of [B]")

}

Figure 1 A simple subset construction comic, described with our proposed patterns.
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1 Introduction

Today, there are several systems available to describe and render a mathematical diagram.
To describe a diagram using these systems, the end-user typically writes in a domain-specific
language that could resemble any level of abstraction from low-level shape primitives and
layout parameters to the mathematical content itself. As the description language becomes
more high-level, resembling the latter, more qualitative attributes like the former are defined
automatically at runtime during the rendering phase.

As computationally generated diagrams become easier to make, new kinds of mathematical
media integrating such diagrams can emerge. One such medium is what we refer to as the
visual mathematical narrative. A visual mathematical narrative is simply a display of several
diagrams with a story that binds them together. Such a display can be varied and complex
enough that we consider it a medium in its own right.

1.1 Visual Narratives
To further characterize visual mathematical narratives, and the constructs they may contain,
we look to the broader space of visual narratives. Visual narratives famously appear as some
of the oldest known human-created media, from the Lascaux Caves to Egyptian tombs [9].
They also appear in the present as comics in the United States, or manga in Japan. This
broader medium has been studied more extensively than its mathematical variant, and much
prior work on it has informed the math-specific patterns we define below.

Why are visual mathematical narratives an important medium to explore? We identify
three of its qualities that may augment the capabilities existing mathematical media, from
proofs to lectures to textual explanations. These qualities are derived from prior literature
on visual narratives. We further hypothesize that maximizing these three qualities make any
medium more amenable to human understanding.

1.1.1 Decomposability
If a concept or process can be broken up into parts, it is decomposable. According to Clark
and Mayer’s “Segmenting Principle” a complex lesson can be simplified by breaking its
constituent concepts and interactions down into “manageable segments...presented one at
a time” [7]. This is a relevant principle for constructing mathematical narratives since all
narratives are fundamentally about representations in sequence.

1.1.2 Local Structure
Arnheim writes that “to see means to see in relation” [5]. It follows that a useful visual
representation (or “depiction” [20]) has enough structure that a reader’s perceptual system
can internalize how objects relate to each other within it. Larkin and Simon observe in
their study that diagrams afford “localities”; places where information can be “accessed
and processed simultaneously” in an efficient way. Further, localities that are connected
“adjacent[ly]” aid inference and problem-solving ability by conveying relations on the 2-d
plane [22]. Kosslyn et al argue that while propositional (“descriptive”) representations “make
explicit and accessible semantic interpretations”, depictive representations “make explicit
and accessible all... spatial relations” [20]. Both representational types have strengths and
weaknesses, but media that express concepts in only one may obscure an entire class of
relations.
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1.1.3 Global Structure
Local structure allows for comparison within representations, but comparison between rep-
resentations can facilitate understanding as well [18]. A well-defined global structure is
amenable to deixis (pointing), saccades (glancing), and self-guided pacing forwards and
backwards within a narrative, which are cognitive-physiological mechanisms that we will see
can aid comprehension. In other words, high-level structure provides an interface for finding
relations between the frames of a narrative.

Note that we define a narrative as having global structure only if it displays local structures
adjacently in space so that they can be readily compared. Therefore, animated videos lack
such a quality, since they display frames one at a time.

1.2 The Description Problem
We now return to the scope of existing diagram-creation systems. Though these systems
can produce individual diagrams, the problem of describing an inter-diagrammatic narrative
using high-level descriptions has largely gone unaddressed. A particular problem many of
these systems face is visual continuity: if objects reappear in multiple diagrams, the system
should make these objects easily recognizable across diagrams.

Though visual continuity may appear to concern only the rendering side of diagram
creation, it is also relevant to the design of the description language. What defines the
boundary between separate diagrams if some content is reused between them? There are
opportunities for additional high-level narrative constructs that build on top of this continuity
principle; for instance, affordances that guide the reader’s attention to a particular object or
transformation in a diagram.

1.3 Penrose
Penrose is a mathematical diagram-creation system that uses a high-level description
language called Substance. Substance aims to resemble the original mathematical notation
that corresponds to the objects being visualized. This resemblance comes at the expense
of omitting visual descriptions, such as shape primitives, colors, sizes, and layout. These
visual descriptions are written at another abstraction layer through the Style language.
The benefit of the Substance-Style distinction is that Style programs are reusable and
interchangeable for the same mathematical content: a Substance program of nested sets
can be represented through a venn diagram or a tree Style at the user’s discretion.

Penrose ultimately enables creation of ad-hoc visual constructions to explain a singular
frame, or panel, of mathematics with little stylistic effort required of the user [28]. However,
when defining several diagrams in sequence, semantically similar descriptions in Penrose
may not necessarily render visually similar diagrams due to the system’s sampling-based
approach. Visual continuity is therefore lost, as the system assumes diagrams only exist as
isolated panels.

The central assumption of the Penrose design is that diagrams can be universally
described through a formal stylistic grammar corresponding to mathematical objects. Sim-
ilarly, this paper’s central assumption is that diagrammatic narratives can be described
through a formal narrative grammar. In this paper, we suggest how one might define a visual
mathematical narrative using a declarative description language based on the Penrose
system. For such a language, we define several high-level visual constructs, or patterns,
that might appear in the medium. We also explore the design implications of the medium:
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how might a visual mathematical narrative correspond to a textual one? Our suggestions
constitute a synthesis of prior literature on visual narratives and mathematics education.

2 Extending Related Work

We draw upon several existing designs and principles from visual narratives, declarative
languages for such, and mathematical narratives.

Several language designs inspired by drama scripts have significantly influenced our design:
THAPL, “A Theatrical DSL” [12], and the esoteric SPL, “The Shakespeare Programming
Language” [16]. We paid especially close attention to a declarative construct both works
call the dramatis personae, which defines the “variables” or “objects” that are in scope for a
particular scene. Consider mathematical objects to be the dramatis personae of this work. In
addition, ComicsML [27] and a comprehensive derivative [3] provide a foundational structure
for a declarative semantics of comics.

Sloan’s Visual Narrative Styles in Mathematics and Computer Science [34] provides a
comprehensive set of cognitive design principles for creating visual mathematical narratives.
Bach et al’s “Graph Comics” work derives a comprehensive set of concrete patterns for
creating visual narratives around graphs [6].

Cohn’s work around the Visual Narrative Grammar theory [9] [10] [11] [8] applies
grammatical and cognitive methods to the visual narrative medium, which have informed
how we derived our patterns and syntax.

Lastly, Martens et al’s Discourse-driven Comic Generation [25] formalizes many of Cohn’s
and McCloud’s principles into a grammar of panel transitions, and implements this grammar
as a system for generating abstract visual narratives. This work recognizes a need to encode
visual and narrative continuity in the narrative’s semantics, a concept the authors refer to as
relatedness (via Saraceni, [32]).

3 Patterns

We are interested in enumerating the high-level inter-diagram relationships (“patterns”) that
appear in mathematical visual narratives. The patterns adhere to our principle of visual
continuity (which Latour calls optical consistency [23], and Saraceni, relatedness [32]). We
describe the principle through the question: what are the valid state transitions for these
objects which preserve visual continuity between frames?

These patterns are derived from cognitive design principles [34] and motifs in existing
visual mathematical media. Though we present concrete ways of visually expressing these
patterns, they may manifest through other visual representations, or Styles, depending on
the design of the host medium.

3.1 Conjunction
Cohn observes that different panel displays in sequential media provide different “windows”
on the same scene. To model this, he borrows an idea from linguistics: conjunction, a pattern
that conjoins narrative primitives into a hierarchy [10]. This mechanic enables narrative
flexibility, separating underlying content from its sequential representation. It is sensible,
then, to provide the ability to recombine objects into arbitrary panel delineations (while
maintaining their optical consistency). Authors can first introduce objects separately to
the reader, and compose the ensemble as a conjunction panel. Or, objects can reappear in
different environments, with further mutations applied independently of each other.
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The Conjunction pattern demonstrates an important distinction between what we refer
to as a scene and a panel. A scene is the invisible scope that defines the objects that can
be depicted in a space; the underlying content. Scenes are delimited in our syntax as curly
brackets, { }, within which are the objects in the scene. Scenes are also implicitly composed
through newlines: if one line defines a Set A, then the next line defines a Set B, the resulting
(desugared) scene hierarchy is:

{
Set A
{

Set B
}

}

Panels, on the other hand, are the concrete visual units which may or may not show the
entire scene. These are the frames the reader sees. We represent panels as function calls:
a panel showing just Set A would be called within its scene Panel([A]). A panel showing
both A and B, along with a caption, could be called within their composed scene (as well as
a caption) as Panel([A, B], "Here are [A] and [B]").

By separating the scene’s object definitions (dramatis personae) from their inclusion in
panel definitions, a conjunction pattern emerges in our language. Authors can selectively
include references to objects defined in the background. For a usage example, compare the
scenes with two sets in Figures 2a and 2b.

3.2 Multiples

Tufte dedicates an entire chapter in his 1997 work to the concept of “multiples” [37, p. 105].
A “multiples” display shows multiple images riffing off of the same underlying idea. This
allows for comparison, pattern recognition, and reinforcement; processes that are essential for
internalizing the nature of an object. Perceptual studies have found that comparisons between
different pairs of objects can lead to different outcomes and underlying conceptions [13]. In
particular, Kellman et al found that comparative lineups of mathematical representations with
varying structures improved students’ speed in solving both visual and symbolic problems
[18].

In mathematics literature, a plurality of concrete examples is often foregone in favor of
presenting “arbitrary” instances that generalize to any member of a set. What if generality
and concreteness could be reconciled by making it easier to provide a surplus of examples?
A large number of handpicked examples can potentially show diverse slices of an otherwise
vast space. In particular, displaying an array of examples allows for “special cases” to
emerge, exposing the reader to salient points in the concept space. However, producing these
examples has historically been painstaking work. The Penrose system constructs diagrams
through an inherently sampling-based process, making this task trivial.

We extend the Panel function defined previously with a new function, SeedPanel, which
takes in a seed integer as well as the existing arguments. Penrose samples diagrams
pseudo-randomly from a seed, so one approach to ensure we get a diverse Multiples display
is to pin these samplings explicitly by specifying a seed. In Figure 3, we take a figure from
Dynamics [1] and interpret it as such a display.



6 Defining Visual Narratives for Mathematics Declaratively

Band the set B is a subset of AAConsider the set 

{
Set A, B
Panel ([A], " Consider the set [A]")
Panel ([B], "and the set [B]")

IsSubset (A, B)
Panel ([A, B], "[A] is a subset of [B]")

}

(a) Two sets are depicted separately before their subset predicate.

B is a subset of AA BConsider the sets and 

{
Set A, B
Panel ([A, B], " Consider the sets [A] and [B]")

IsSubset (A, B)
Panel ([A, B], "[A] is a subset of [B]")

}

(b) Two sets are depicted together before their subset predicate: a conjoined
variation of Figure 2a.

Figure 2 A mockup of a set theory narrative and its syntax for the conjunction pattern.
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{
Trajectory T
Inset I
Outset O
Point H, H+ ∈ I
Intersection (I, O)

SeedPanel (5340958503 , [T, I, O, H, H+])
SeedPanel (3536319804 , [T, I, O, H, H+])
SeedPanel (4501177698 , [T, I, O, H, H+])

}

Figure 3 Figure 13.5.3 from Dynamics [1, p. 401] which “shows three possible connections for
the outset curves”, interpreted as a panel construction in our language with arbitrary seeds.
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B is a subset of AA BConsider the sets and CBand  is a subset of 

{
Set A, B
Panel ([A, B], " Consider the sets [A] and [B]")

IsSubset (A, B)
Panel ([A, B], "[A] is a subset of [B]")

Set C
IsSubset (B, C)
Panel ([A,B,C], "and [B] is a subset of [C]")

}

Figure 4 Extending Figure 2b, we depict a three-layered construction.

3.3 Predicates
Predicate functions are fundamental to Penrose’s expressive ability, and mathematical
descriptions in general. A Predicate defines specific properties that an object can have, both
mathematically and, in Penrose’s case, perceptually. It constrains highly general, faceless
objects into acutely specific instances through boolean rules.

In many ways, Predicates are the refined, non-stochastic variants of Multiples. By
iteratively applying Predicates, an author can construct a highly complex object through
narrative. Or, an object can assume several parallel Predicate forms, exposing alternatives.
This iterative approach naturally decomposes the object into its constituent parts. Each
predicate application step is amenable to visual comparison with the next, a process whose
cognitive benefits have been described in the Multiples section.

Extending the earlier narrative in the Conjunction section (Figure 2b), we emphasize
the repeated application of Penrose’s IsSubset predicate in Figure 4. This effectively
decomposes a three-layered set construction into three panels, with subset relationships
defined one at a time.

3.4 Foci
Attention as a finite resource is an important finding in cognitive science that is highly
applicable to visual narrative design. Recent ideas such as biased competition theory suggest
that objects in a scene “compete” in the brain for attention, creating a zero-sum game of
limited processing ability [33]. As Tufte remarks, “when everything is emphasized, nothing is
emphasized” [37, p. 74]. Using visual cues, we can direct the learner’s attention to important
features of a panel and mute distracting ones.

There are several visual mechanics we have found in existing mathematical media that
attempt to focus the viewer’s attention. Anderson et al observe lecturers’ extensive use of
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Figure 5 Eli Parra’s comics rendition of Euclid’s Elements [29]. The primary foci of the panels,
lines, are highlighted in red. Secondary foci, circles, are highlighted in black.

“attentional marks” on their slides that add a secondary layer on top of existing figures to
non-destructively call attention to pieces of content in a scene [4]. Greiffenhagen’s video
analysis of blackboard lectures finds use of deixis, pointing at “these” and “those” pieces
of notational objects, to guide the student’s attention through the space of an otherwise
complex scene [14].

In other media, authors mutate the visual properties of existing objects, rather than
introducing new properties. This ranges from a simple fill color change to an opacity
adjustment or layering change. For example, Figure 5 focuses on different lines and circles in
each panel to emphasize different features of the same scene; namely, the equality of circle
radii and triangle edges. Bach et al denote focal elements as “main characters”, which are
distinguished by changing visual properties, clipping minor characters out of the panel, or
explicit labelling [6].

The DataToon system infers several of these focal mechanisms automatically to interpolate
between frames and maintain continuity. In particular, DataToon recognizes if an author
intends to “zoom” on an object, show a particular period of time, or “filter” out classes of
data [19].

It is important to note that Foci don’t just appear on existing objects. Foci can be
applied to objects that are introduced into a scene, and their bright color, figure-ground
distinction, and opacity choices draw attention and mute existing objects that were present
in prior instances.

Foci can also draw attention to correspondences between disparate structures. Again,
there are no changes to the content at hand needed when directing the reader’s attention.
Corresponding colors and other attributes create connections in a display when there otherwise
would be none. They can also clarify the meaning of conventional representations, like notation
and text, through juxtaposition and correspondence with visual representations (Figure 6).

When the objects depicted have features at several scales, it is useful to focus on particu-
lar localities through “zooming” This appears frequently in representations of continuous
structures, such as real-valued functions, where smaller intervals convey information that
informs the reader of properties in larger intervals, and vice versa (e.g. see figures 7.1.1
and 7.1.2 in Dynamics [1, p. 235-236]). Local-global shifts can provide a holistic view of
multiscale objects in a visual setting.

The encoding of foci is not much different from predicates, as foci are essentially functions
being applied to objects or other predicates. They could be as generic and Style-specific as
a simple invocation to Focus(A) on a particular object A, or as concrete as a Zoom([A,B,C])
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Figure 6 Several Foci at time 2:20 in a 3blue1brown video [31]. Notation and text is highlighted
to show what is being depicted beneath it. The object Q in the depiction, a focal element in the
description above it, has been tinted yellow for its emphasis.

call on multiple objects A, B, C. Different objects in a scene can be denoted as different foci
through isolated sub-scene declarations:

{
Set A
Set B
IsSubset (B,A)
{

Focus(A)
Panel ([A,B], "Here is [A]")

}
{

Focus(B)
Panel ([A,B], "and here is [B]")

}
}

3.5 Emanata

When given the chance, effective mathematical instruction expresses itself through qualitative
analogies and gestures that suggest lifelike, embodied processes. Lakoff and Núñez suggest
that the process of explaining and doing mathematics is, in fact, intrinsically embodied [21].
An analysis of a blackboard lesson on the Dutch Book argument finds moments where the
lecturer compares two quantities through elaborate gestures and crouching [14]. Qualitative
properties are also in animations like 3blue1brown’s linear algebra series, where the instructor
describes an embodied mental model for linear transformations. He conveys that matrix
multiplication “gives the feeling of squishing and morphing the space itself”, a piece of
intuition that reoccurs in his series [30]. Indeed, former Disney animators famously described
their craft as a process to create an “Illusion of Life” [36].

An author could enhance the reader’s understanding of mathematical actions, then, if
given affordances that supplement the material with embodied qualitative annotations, known
as “emanata” among comics theorists [38].
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Figure 7 Figure 2.3.2 of Dynamics [1, p. 72], showing several emanata in use to depict the
motion of some mechanical oscillators. Several “visual morphological relations” that Cohn [11]
enumerates appear. The ball and box have outlined shadows (“suppletion”) that suggest bounds to
their oscillation, not to mention the arrows themselves that trace their paths. There are also red
particles trailing the bodies (“affixation”) that suggest rapid motion.

What are the visual primitives that constitute emanata? The answers are highly domain-
specific, depending on the Style of the visualizations being depicted. Cohn enumerates
several recurring “visual morphological relations” in comics [11], some of which appear in
Figure 7.

One common representation for the emanatum of motion, or a moving object, is through
“sliced frames”. Translations and transformations can be represented through a sampled
interpolation, with notable moments captured in particular panels. See Figures 3, 4, 9, and
10 in To Dissect A Mockingbird [17] for examples of this in an animated lambda calculus
notation. As mentioned, the DataToon system affords a sliced frames effect through automatic
interpolation [19].

B is a subset of AA BConsider the sets and 

{
Set A, B
Panel ([A, B], " Consider the sets [A] and [B]")
SuppletePanel ({ IsSubset (A,B)}, [A,B], "[A] is a subset of [B]")

}

Figure 8 Modifying Figure 2b, we decorate the IsSubset predicate with a suppletion: In the
second panel, set A is traced as if it is moving inside of B from where it originally was in the first
panel.

Given their post-hoc nature, annotating operations that already occurred, we envision
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emanata as decorators on predicates. A simple example is the suppletion emanatum: in
Figure 8, the IsSubset predicate is brought to life by decorating it as a suppletion.

It is worth noting that while Foci and Emanata appear to be similar, they play distinct,
complementary roles in creating a smooth visual narrative. While both guide the reader’s
attention, Emanata supplement mathematical “verbs” with qualitative properties, while Foci
take the burden of defining the frame of local focus and direct the motion of the eye between
mathematical “nouns”.

3.6 Nesting
So far we have discussed patterns that describe inter-panel relationships. The visual narrative
medium also has a simple, powerful mechanic: placing panels within panels. Sousanis
remarks on the medium: “[F]rom the forking paths, tangential (and parenthetical), layered
and overlapping, intersecting, moments nested within moments, comics can hold the unflat
ways in which thought unfolds.” [35] Tufte writes of “visual confections”: “an assembly of
many visual events, selected... from various Streams of Story, then brought together and
juxtaposed on the still flatland of paper.” [37, p. 121] These two descriptions suggest that
there can be nonlinearity and hierarchy in visual narratives, brought out by composition,
or nesting, of panels. Indeed, the visual narrative isn’t the only medium where nesting
occurs. “Nested Art” can be found in paintings (sometimes referred to as “mise en abymes”),
literature, poetry, and film [24]. Cohn argues that visually nested panels, “recursive carriers”,
are powerful expressive features of the comics medium analogous to linguistic recursion in
human language [8].

Figure 9 A modified version of figures 1.22, 1.23, 1.24, 1.26 from The Knot Book [2]. Reidemeister
moves (originally referenced as Roman numerals) have been annotated with their respective definitions
as popout “thought bubbles”.

Textual mathematical proofs are structured with dense relations. Claims are backed by
prior evidence in the form of numbered and named theorems and lemmas. If the “scope”
or “proof environment”, is not sufficiently implanted in the reader’s mind, the evidence
being cited is simply a dangling reference. In visual narrative variations of these proofs, we
hypothesize that due to the inherent nonlinearity of visual media, providing the evidence
inline for a juxtaposed proof step as a nested parenthetical, perhaps a “thought bubble”,
would not significantly interrupt the reading experience. As one lecturer walks through a
proof, Greiffenhagen observes, he uses a sliding blackboard’s panelling to store intermediate
lemmas, and gestures towards them as needed [15]. A proof step citing a significant theorem
may require a statement to the likes of, “Recall that, in lemma 4.2...” This could manifest
visually as a picture-in-picture, a popout element that can easily be skipped over for readers
familiar with the juxtaposition, as seen in Figure 9.
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Nested panels can also provide a sense of parallelism. Temporally, a panel showing the
“final product” early on provides anticipation of what’s to come. Or, several nested panels in
a row can decompose a complex process summarized by the parent panel. Spatially, a nested
panel that shows a local slice of a global representation provides a simultaneous perspective.
McCloud calls the phenomenon of “observing the parts but perceiving the whole” “closure”
[26, pg. 63]. A reader is capable of interpolating disparate panels, demarcated by borders
(forming closure), into a coherent visual narrative.

The implementation of nesting is nearly as straightforward as any inter-panel relationship.
The nesting function is a binary operation between the parent and child panels. One
could bind the child and parent panels, e.g. p1 and p2, anchor p1 to p2’s Set A and
then present the panels after binding by calling a function: NestPanels(p1, p2, A). The
spatial parallelism described is a special usecase of the “Zoom” function in the Foci pattern.
Temporal parallelism, showing interpolated processes, can be represented similarly to the
motion emanatum described in the Emanata section: several sliced frames in sequence within
a parent frame.

4 Representing Formalisms

If visual narratives are just another way of representing mathematical formalisms, could
there be a mapping between them and textual mathematical narratives, such as textbooks
and proofs? The following is a speculative, qualitative look at potential correspondences
between the two media.

4.1 The Gutter as Logical Implication
A key component of McCloud’s comics theory is the role of the “gutter”. The gutter is
the blank space between a comic’s panels, and it can represent any temporal, spatial, or
conceptual boundary that glues the narrative together [26, c. 3]. We discussed the Nesting
pattern in reference to this idea: it forms a gutter between two panels being presented
hierarchically or in parallel. This is analogous to mechanics seen in textual mathematical
narratives, for instance, figures, theorems, and lemmas. The typical gutter that forms
between adjacent panels, however, can take an even more fundamental function: logical
implication. From one panel to the next, a state transition occurs that presumably makes
sense, or is valid, to the reader.

This correspondence is especially clear in Eli Parra’s comics rendition of Euclid’s Elements.
Consider the gutters between the sequence of panels in Figure 5. There is a logical sequence
that takes place here: equal radii implies equal lines implies an equilateral triangle.

Why is this correspondence important? It could inform the language design decisions
in this space. Our language is declarative and semantics-driven, so mathematical notations
and renderings represented in our language ought to be logically valid, especially when
constructing visual proofs.

4.2 Parallelism as Counterfactual
A recurring meta-pattern in our patterns has been the idea of parallelism: Multiples,
Predicates, and Nesting are all capable of conveying parallel scenarios. What arises from
the use of this concept is a fundamental primitive of mathematical inquiry: the use of
counterfactuals, or “what-ifs”. When mathematicians face a fork in the road for a proof
(separate “cases”), they construct parallel timelines and walk down each. We can reify this
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process by taking advantage of the affordances of the 2-d plane: parallel scenarios can be
shown in parallel.

4.3 Additions as Augmentation

Several patterns don’t necessarily have direct textual correspondences, but we believe this
highlights the shortcomings of the latter medium. In particular, Multiples, Foci, and Emanata
are patterns that reify abstraction in a way that textual mathematical narratives have failed
to capture. Most importantly, the patterns leverage the reader’s perceptual facilities in a
variety of ways, making ideas digestible, comparable, and ready-at-hand.

5 Conclusion

As mathematical diagrams become easier to create, we must remember that single diagrams
only tell part of the story. In this paper, we have suggested a future where diagrams tell
complex stories with deep structure, attentional mechanisms, and recombinations. We are
not new in suggesting such a medium, but rather, in identifying the medium’s principles and
assimilating them into a declarative language that intertwines mathematical objects and
their narrative presentation.

5.1 Future Work

We envision our proposed language as an additional feature of Penrose itself. To that end,
the next step is to implement this feature. The continuity problem alone poses a significant
task, as it requires a high degree of control over the optimizer’s behavior: between panels,
which values should be held invariant, and which are free to assimilate around new objects?
This depends on the high-level question of what makes an object recognizable to the reader
between each panel.

A significant segment of the visual narrative medium we have not addressed is layout.
We have implicitly assumed that the Panel function creates standalone panels, and the
NestedPanels function somehow places child panels by anchoring them to objects in the
parent. Sequential panels might have different proportions on a printed page, or mixed
vertical and horizontal orderings. Floating captions and text-only “speech bubbles” within
panels also occur frequently in visual narratives, with a host of layout constraints of their own.
This may be a design problem left for the diagram creator to deal with. Or, the Penrose
system can optimize local and global layouts like it does already for mathematical objects
and labels.

Visual mathematical narratives as we have proposed here are still static pieces of content.
We envision interactivity as an extension of this medium: prodirect manipulation, draggable
global parameters, and Hypercard-like clickable targets are just a few paths of potential
inquiry.

References

1 R.H. Abraham and C.D. Shaw. Dynamics: The Geometry Of Behavior. Addison-Wesley
studies in nonlinearity. Basic Books, 1992.

2 C.C. Adams. The Knot Book. W.H. Freeman, 1994. URL: http://math.harvard.edu/~ctm/
home/text/books/adams/knot_book/knot_book.pdf.

http://math.harvard.edu/~ctm/home/text/books/adams/knot_book/knot_book.pdf
http://math.harvard.edu/~ctm/home/text/books/adams/knot_book/knot_book.pdf


M. Krieger et al. 15

3 Jason Alderman. Generating comics narrative to summarize wearable computer data. School
of Literature, Media, and Communication Masters Projects, 2006. URL: https://smartech.
gatech.edu/handle/1853/16822.

4 Richard J. Anderson, Crystal Hoyer, Steven A. Wolfman, and Ruth Anderson. A study of
digital ink in lecture presentation. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’04, pages 567–574, New York, NY, USA, 2004. ACM. URL:
http://doi.acm.org/10.1145/985692.985764, doi:10.1145/985692.985764.

5 Rudolf Arnheim. Visual thinking, page 54. Univ of California Press, 2004.
6 Benjamin Bach, Natalie Kerracher, Kyle Wm. Hall, Sheelagh Carpendale, Jessie Kennedy,

and Nathalie Henry Riche. Telling stories about dynamic networks with graph comics. In
Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, CHI ’16,
pages 3670–3682, New York, NY, USA, 2016. ACM. URL: http://doi.acm.org/10.1145/
2858036.2858387, doi:10.1145/2858036.2858387.

7 Ruth C Clark and Richard E Mayer. E-learning and the science of instruction: Proven
guidelines for consumers and designers of multimedia learning, page 206. John Wiley & Sons,
2016.

8 Neil Cohn. Beyond speech balloons and thought bubbles: The integration of text and image.
Semiotica, 2013(197):35–63, 2013. doi:10.1515/sem-2013-0079.

9 Neil Cohn. Visual narrative structure. Cognitive science, 37(3):413–452, 2013.
10 Neil Cohn. Narrative conjunction’s junction function: The interface of narrative grammar

and semantics in sequential images. Journal of Pragmatics, 88:105 – 132, 2015. URL:
http://www.sciencedirect.com/science/article/pii/S0378216615002507, doi:https://
doi.org/10.1016/j.pragma.2015.09.001.

11 Neil Cohn. Combinatorial Morphology in Visual Languages, pages 175–199. Springer Inter-
national Publishing, Cham, 2018. URL: https://doi.org/10.1007/978-3-319-74394-3_7,
doi:10.1007/978-3-319-74394-3_7.

12 Joseph (Yossi) Gil, David H. Lorenz, and Matan I. Peled. Thapl—a theatrical domain specific
language. In Domain-Specific Language Design and Implementation (DSLDI 2017), co-located
with SPLASH, October 2017. URL: https://2017.splashcon.org/details/dsldi-2017/3/
Thapl-A-Theatrical-DSL.

13 Robert L. Goldstone, Sam Day, and Ji Y. Son. Comparison, pages 103–121. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010. URL: https://doi.org/10.1007/978-3-642-03129-8_
7, doi:10.1007/978-3-642-03129-8_7.

14 Christian Greiffenhagen. Video analysis of mathematical practice? different attempts to
“open up” mathematics for sociological investigation. Forum Qualitative Sozialforschung /
Forum: Qualitative Social Research, 9(3), 2008. URL: http://www.qualitative-research.
net/index.php/fqs/article/view/1172, doi:10.17169/fqs-9.3.1172.

15 Christian Greiffenhagen. The materiality of mathematics: Presenting mathematics at the black-
board. The British Journal of Sociology, 65(3):502–528, 2014. URL: https://onlinelibrary.
wiley.com/doi/abs/10.1111/1468-4446.12037, doi:10.1111/1468-4446.12037.

16 Karl Hasselström and Jon Åslund. The shakespeare programming language, 2001. URL:
http://shakespearelang.sourceforge.net/report/shakespeare/shakespeare.html.

17 David C Keenan. To dissect a mockingbird: A graphical notation for the lambda calculus
with animated reduction, August 1996. URL: http://dkeenan.com/Lambda/.

18 Philip J. Kellman, Christine M. Massey, and Ji Y. Son. Perceptual learning modules in
mathematics: Enhancing students’ pattern recognition, structure extraction, and fluency.
Topics in Cognitive Science, 2(2):285–305, 2010. URL: https://onlinelibrary.wiley.com/
doi/abs/10.1111/j.1756-8765.2009.01053.x, doi:10.1111/j.1756-8765.2009.01053.x.

19 Nam Wook Kim, Nathalie Henry Riche, Benjamin Bach, Guanpang A. Xu, Matthew Brehmer,
Ken Hinckley, Michel Pahud, Haijun Xia, Michael McGuffin, and Hanspeter Pfister. Datatoon:

https://smartech.gatech.edu/handle/1853/16822
https://smartech.gatech.edu/handle/1853/16822
http://doi.acm.org/10.1145/985692.985764
http://dx.doi.org/10.1145/985692.985764
http://doi.acm.org/10.1145/2858036.2858387
http://doi.acm.org/10.1145/2858036.2858387
http://dx.doi.org/10.1145/2858036.2858387
http://dx.doi.org/10.1515/sem-2013-0079
http://www.sciencedirect.com/science/article/pii/S0378216615002507
http://dx.doi.org/https://doi.org/10.1016/j.pragma.2015.09.001
http://dx.doi.org/https://doi.org/10.1016/j.pragma.2015.09.001
https://doi.org/10.1007/978-3-319-74394-3_7
http://dx.doi.org/10.1007/978-3-319-74394-3_7
https://2017.splashcon.org/details/dsldi-2017/3/Thapl-A-Theatrical-DSL
https://2017.splashcon.org/details/dsldi-2017/3/Thapl-A-Theatrical-DSL
https://doi.org/10.1007/978-3-642-03129-8_7
https://doi.org/10.1007/978-3-642-03129-8_7
http://dx.doi.org/10.1007/978-3-642-03129-8_7
http://www.qualitative-research.net/index.php/fqs/article/view/1172
http://www.qualitative-research.net/index.php/fqs/article/view/1172
http://dx.doi.org/10.17169/fqs-9.3.1172
https://onlinelibrary.wiley.com/doi/abs/10.1111/1468-4446.12037
https://onlinelibrary.wiley.com/doi/abs/10.1111/1468-4446.12037
http://dx.doi.org/10.1111/1468-4446.12037
http://shakespearelang.sourceforge.net/report/shakespeare/shakespeare.html
http://dkeenan.com/Lambda/
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1756-8765.2009.01053.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1756-8765.2009.01053.x
http://dx.doi.org/10.1111/j.1756-8765.2009.01053.x


16 Defining Visual Narratives for Mathematics Declaratively

Drawing dynamic network comics with pen + touch interaction. In CHI 2019, pages 1–
12. ACM, May 2019. URL: https://www.microsoft.com/en-us/research/publication/
datatoon-drawing-dynamic-network-comics-with-pen-touch-interaction/.

20 Stephen M Kosslyn, William L Thompson, and Giorgio Ganis. The case for mental imagery,
page 12. Oxford University Press, 2006.

21 G. Lakoff and R.E. Núñez. Where Mathematics Comes from: How the Embodied Mind Brings
Mathematics Into Being. Basic Books, 2000.

22 Jill H. Larkin and Herbert A. Simon. Why a diagram is (sometimes) worth ten thousand words.
Cognitive Science, 11(1):65–100, 1987. URL: https://onlinelibrary.wiley.com/doi/abs/
10.1111/j.1551-6708.1987.tb00863.x, doi:10.1111/j.1551-6708.1987.tb00863.x.

23 Bruno Latour. Visualisation and cognition: Drawing things together. Avant: Trends in
Interdisciplinary Studies, 3(T):207–260, 1986.

24 Paisley Livingston. Nested art. The Journal of Aesthetics and Art Criticism, 61(3):233–245,
2003. URL: http://www.jstor.org/stable/1559175.

25 Chris Martens and Rogelio Enrique Cardona-Rivera. Discourse-driven comic generation. 2016.
26 Scott McCloud. Understanding Comics. HarperCollins, 1994.
27 Jason Mcintosh. Comicsml: A simple markup language for comics, 2001. URL: https:

//jmac.org/projects/comics_ml/about.html.
28 Wode Ni, Katherine Ye, Joshua Sunshine, Jonathan Aldrich, and Keenan Crane.

Substance and Style: domain-specific languages for mathematical diagrams. In
Domain-Specific Language Design and Implementation (DSLDI 2017), co-located with
SPLASH, October 2017. URL: https://2017.splashcon.org/details/dsldi-2017/10/
Substance-and-Style-domain-specific-languages-for-mathematical-diagrams.

29 Eli Parra. Points & lines: A reinterpretation into comics of book 1 of euclid’s elements.,
January 2018. URL: http://elzr.com/pointsandlines/.

30 Grant Sanderson. Linear transformations and matrices | essence of linear algebra, chapter 3,
August 2016. URL: https://www.youtube.com/watch?v=kYB8IZa5AuE.

31 Grant Sanderson. This problem seems hard, then it doesn’t, but it really is, August 2019.
URL: https://www.youtube.com/watch?v=M64HUIJFTZM.

32 Mario Saraceni. Relatedness: aspects of textual connectivity in comics, pages 115–127. Blooms-
bury Publishing Company, 1 2016.

33 Paige Scalf, Ana Torralbo, Evelina Tapia, and Diane Beck. Competition explains limited atten-
tion and perceptual resources: implications for perceptual load and dilution theories. Frontiers
in Psychology, 4:243, 2013. URL: https://www.frontiersin.org/article/10.3389/fpsyg.
2013.00243, doi:10.3389/fpsyg.2013.00243.

34 Joseph D. Sloan. Visual narrative styles in mathematics and computer science. In Proceedings
of the 2007 Visual and Computational Teaching and Learning Conference, 2007. URL: https:
//pdfs.semanticscholar.org/7f31/bee2db113a0f5f27ff0ec5657111e6effefe.pdf.

35 Nick Sousanis. Unflattening, page 66. Harvard University Press, 2015.
36 F. Thomas and O. Johnston. The illusion of life: Disney animation. Hyperion, 1995.
37 Edward R. Tufte. Visual Explanations: Images and Quantities, Evidence and Narrative.

Graphics Press, Cheshire, CT, USA, 1997.
38 M. Walker. The Lexicon of Comicana. iUniverse, 2000.

https://www.microsoft.com/en-us/research/publication/datatoon-drawing-dynamic-network-comics-with-pen-touch-interaction/
https://www.microsoft.com/en-us/research/publication/datatoon-drawing-dynamic-network-comics-with-pen-touch-interaction/
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1551-6708.1987.tb00863.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1551-6708.1987.tb00863.x
http://dx.doi.org/10.1111/j.1551-6708.1987.tb00863.x
http://www.jstor.org/stable/1559175
https://jmac.org/projects/comics_ml/about.html
https://jmac.org/projects/comics_ml/about.html
https://2017.splashcon.org/details/dsldi-2017/10/Substance-and-Style-domain-specific-languages-for-mathematical-diagrams
https://2017.splashcon.org/details/dsldi-2017/10/Substance-and-Style-domain-specific-languages-for-mathematical-diagrams
http://elzr.com/pointsandlines/
https://www.youtube.com/watch?v=kYB8IZa5AuE
https://www.youtube.com/watch?v=M64HUIJFTZM
https://www.frontiersin.org/article/10.3389/fpsyg.2013.00243
https://www.frontiersin.org/article/10.3389/fpsyg.2013.00243
http://dx.doi.org/10.3389/fpsyg.2013.00243
https://pdfs.semanticscholar.org/7f31/bee2db113a0f5f27ff0ec5657111e6effefe.pdf
https://pdfs.semanticscholar.org/7f31/bee2db113a0f5f27ff0ec5657111e6effefe.pdf

	Introduction
	Visual Narratives
	Decomposability
	Local Structure
	Global Structure

	The Description Problem
	Penrose

	Extending Related Work
	Patterns
	Conjunction
	Multiples
	Predicates
	Foci
	Emanata
	Nesting

	Representing Formalisms
	The Gutter as Logical Implication
	Parallelism as Counterfactual
	Additions as Augmentation

	Conclusion
	Future Work


